5x^2-16+4x^2-6x=180

Simple and best practice solution for 5x^2-16+4x^2-6x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2-16+4x^2-6x=180 equation:



5x^2-16+4x^2-6x=180
We move all terms to the left:
5x^2-16+4x^2-6x-(180)=0
We add all the numbers together, and all the variables
9x^2-6x-196=0
a = 9; b = -6; c = -196;
Δ = b2-4ac
Δ = -62-4·9·(-196)
Δ = 7092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7092}=\sqrt{36*197}=\sqrt{36}*\sqrt{197}=6\sqrt{197}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{197}}{2*9}=\frac{6-6\sqrt{197}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{197}}{2*9}=\frac{6+6\sqrt{197}}{18} $

See similar equations:

| 3x+8=x-30 | | 13/20x=65/20 | | (7x−4)+(9x−40)=180 | | 20-9w=4(15)-w | | 5/20x+8/20x=3.25 | | x/6-2.6=-21.8 | | 2u^2+3=7u | | 9m-5=3(m+8) | | 3x-7=3x-9+3 | | 2-2c=-14 | | 3/24=r/24 | | 6-2v=8 | | 3/24=r52 | | 3(2)*3(2)=x | | y-39=12 | | 42=49-x | | (x-5)^2+9=58 | | .29x+.11x=20 | | .29x+.11x=$20.00 | | .29x+.11x=$20 | | 8(-8x+4)=4(-7x+8) | | 4x-3=1/2(7x-1) | | 1/2(4x-3)=7x-1 | | 7x-1=1/2(4x-3) | | 7=1(7)+b | | 7z-1=1/2(4z-3) | | 50.24=2(3.14)x+7 | | (2m-1)(2m-1)=25 | | (2m-1)^2=25 | | 12m+21=9 | | 16t+18+18=-17t-16 | | x-1.74=4.5 |

Equations solver categories